p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23⋊3C42, C25.13C22, C23.155C24, C24.523C23, C22.262+ (1+4), C24.64(C2×C4), (C2×C42)⋊1C22, C2.8(C22×C42), C22.14(C2×C42), C22.27(C23×C4), (C23×C4).30C22, C23.204(C22×C4), C2.C42⋊70C22, (C22×C4).1231C23, C2.1(C22.11C24), (C4×C22⋊C4)⋊2C2, (C2×C22⋊C4)⋊16C4, C22⋊C4⋊45(C2×C4), (C22×C4)⋊11(C2×C4), C22⋊C4○2(C22⋊C4), (C2×C4).288(C22×C4), (C22×C22⋊C4).8C2, (C2×C22⋊C4).551C22, C2.C42○(C2.C42), C22⋊C4○(C2×C22⋊C4), SmallGroup(128,1005)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 828 in 456 conjugacy classes, 260 normal (5 characteristic)
C1, C2, C2 [×6], C2 [×12], C4 [×24], C22 [×19], C22 [×52], C2×C4 [×24], C2×C4 [×48], C23, C23 [×34], C23 [×36], C42 [×8], C22⋊C4 [×48], C22×C4 [×36], C22×C4 [×12], C24 [×15], C24 [×4], C2.C42 [×8], C2×C42 [×8], C2×C22⋊C4 [×36], C23×C4 [×6], C25, C4×C22⋊C4 [×12], C22×C22⋊C4 [×3], C23⋊C42
Quotients:
C1, C2 [×15], C4 [×24], C22 [×35], C2×C4 [×84], C23 [×15], C42 [×16], C22×C4 [×42], C24, C2×C42 [×12], C23×C4 [×3], 2+ (1+4) [×4], C22×C42, C22.11C24 [×6], C23⋊C42
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d4=e4=1, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, de=ed >
(1 3)(2 4)(5 16)(6 13)(7 14)(8 15)(9 11)(10 12)(17 30)(18 31)(19 32)(20 29)(21 23)(22 24)(25 27)(26 28)
(2 24)(4 22)(5 14)(7 16)(10 28)(12 26)(17 32)(19 30)
(1 23)(2 24)(3 21)(4 22)(5 14)(6 15)(7 16)(8 13)(9 27)(10 28)(11 25)(12 26)(17 32)(18 29)(19 30)(20 31)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 25 15)(2 19 26 16)(3 20 27 13)(4 17 28 14)(5 22 32 10)(6 23 29 11)(7 24 30 12)(8 21 31 9)
G:=sub<Sym(32)| (1,3)(2,4)(5,16)(6,13)(7,14)(8,15)(9,11)(10,12)(17,30)(18,31)(19,32)(20,29)(21,23)(22,24)(25,27)(26,28), (2,24)(4,22)(5,14)(7,16)(10,28)(12,26)(17,32)(19,30), (1,23)(2,24)(3,21)(4,22)(5,14)(6,15)(7,16)(8,13)(9,27)(10,28)(11,25)(12,26)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,25,15)(2,19,26,16)(3,20,27,13)(4,17,28,14)(5,22,32,10)(6,23,29,11)(7,24,30,12)(8,21,31,9)>;
G:=Group( (1,3)(2,4)(5,16)(6,13)(7,14)(8,15)(9,11)(10,12)(17,30)(18,31)(19,32)(20,29)(21,23)(22,24)(25,27)(26,28), (2,24)(4,22)(5,14)(7,16)(10,28)(12,26)(17,32)(19,30), (1,23)(2,24)(3,21)(4,22)(5,14)(6,15)(7,16)(8,13)(9,27)(10,28)(11,25)(12,26)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,25,15)(2,19,26,16)(3,20,27,13)(4,17,28,14)(5,22,32,10)(6,23,29,11)(7,24,30,12)(8,21,31,9) );
G=PermutationGroup([(1,3),(2,4),(5,16),(6,13),(7,14),(8,15),(9,11),(10,12),(17,30),(18,31),(19,32),(20,29),(21,23),(22,24),(25,27),(26,28)], [(2,24),(4,22),(5,14),(7,16),(10,28),(12,26),(17,32),(19,30)], [(1,23),(2,24),(3,21),(4,22),(5,14),(6,15),(7,16),(8,13),(9,27),(10,28),(11,25),(12,26),(17,32),(18,29),(19,30),(20,31)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,25,15),(2,19,26,16),(3,20,27,13),(4,17,28,14),(5,22,32,10),(6,23,29,11),(7,24,30,12),(8,21,31,9)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,4,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0] >;
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | |
image | C1 | C2 | C2 | C4 | 2+ (1+4) |
kernel | C23⋊C42 | C4×C22⋊C4 | C22×C22⋊C4 | C2×C22⋊C4 | C22 |
# reps | 1 | 12 | 3 | 48 | 4 |
In GAP, Magma, Sage, TeX
C_2^3\rtimes C_4^2
% in TeX
G:=Group("C2^3:C4^2");
// GroupNames label
G:=SmallGroup(128,1005);
// by ID
G=gap.SmallGroup(128,1005);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,219,675]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^4=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations